The Creation of Saint-Gobain Seals’ Digital Engineer
Contents

• Company Profile Saint-Gobain

• Rationale behind the Digital Engineer: the Why

• Digital Engineer architecture: the What

• Building Blocks explained: the How

• Next steps
Saint-Gobain, key figures

- **2018 net sales**: €41.8 BN
- **Present in**: 68 countries
- **More than 80% of sales**: are made in habitat markets: construction, renovation, infrastructures and civil engineering
- **More than 180,000 employees**: and **100+ nationalities** represented
- **Around 4,100 sales outlets**: Created more than **350 years ago**
- **One of the top 100 industrial groups** in the world with around **950 production sites**
Seals, a business unit in Critically Engineered Solutions, who we are

Our Brand

Critical parts making THE difference

- Precise Fit
- Lifetime Confidence

Key Figures

- **14** manufacturing facilities
- **14** Countries
- **1,200** employees

Our Products

- **High temperature thermoplastics for tolerance control**
- **OmnSeal**
- **Rulon**
- **HyComp**

Our Markets

- Wear control in high temperature, high load & motion applications
- Leak control in extreme static & rotary conditions
- Broad PTFE formulations for wear control
Why the Digital Engineer?
Critical applications

Failure is not an option

Secure the knowledge!
Rationale

Global Standardization

Capture Know-How

Training Tool

Why a Digital Engineer?

Cost Optimization

Reduced “Time to Market”

Increase Market Share “Growth”
What is the Digital Engineer?
Non-Digital Engineer: Simplified
Digital Engineer: Overview

1. Knowledge Extraction/Update
2. Query
3. Proposals
4. Feedback
5. Data Storage
6. Machine Learning
7. Knowledge Consolidation
How is the Digital Engineer built?
Digital Engineer: Overview

1. Knowledge Extraction/Update
2. Query
3. Proposals
4. Feedback
5. Data Storage
6. Machine Learning
7. Knowledge Consolidation

Design DB → Engineering Support → Engineering Automation

DTAI

SOLIDWORKS

OPEN RULES

Configure & Automate

HIGH PERFORMANCE SOLUTIONS
Engineering Automation: Known Solutions

- Tool for Internal Sales

- Straightforward task
 - Given input specification
 - Determine 1 standard seal (output)

- Limited knowledge of domain
 - Knowledge in model should be correct
 - Easily verifiable knowledge

→ Model decision procedure
Engineering Automation: Known Solutions

Knowledge Elicitation

- **Brainstorm sessions**
 - Design engineers (technical know-how)
 - Management (strategic decisions)
 - Multiple parties → standard solution

- **Requirements**
 - Formal representation
 - Easily readable by domain experts

- **DMN**
 - Decision tables
 - Friendly Enough Expression Language
 - Decision Requirement Diagram
 - OpenRules

![Diagram of Design Type and factors](image)
Engineering Automation: Known Solutions Implementation
Digital Engineer: Overview

1. Knowledge Extraction/Update
2. Query
3. Proposals
4. Feedback
5. Data Storage
6. Machine Learning
7. Knowledge Consolidation

Design DB

Engineering Support

Engineer

Engineering Automation

1. Knowledge Extraction/Update

DTAI

OPEN RULES

SOLIDWORKS

HIGH PERFORMANCE SOLUTIONS
Engineering Support
Knowledge

- Extensive knowledge of domain
 - But not complete
 → Assist engineers

- More complicated tasks
 - Partial input → Partial output
 - Output → Input
 - Experiment with “out-of-scope”
 - Get explanation
 - Compare designs, materials
 - …

- Physical constraints and preferences
 - Model in First-Order logic
 - Use model generation system
 - IDP (DTAI)
 - Multiple inference tasks
Engineering Support
Knowledge: Example

- **Constraints**
 - DesignType = "Closed" ⇒ ~Spacer.
 - BackPressure ∧ Pclass > 100 ⇒ Spacer.
 - Location = "Bi−directional" ⇒ Spacer.
 - DesignType = "Open" ⇔ AbleToReleaseBP.
 - Location = "PressureAccumulating" ⇒ AbleToReleaseBP.

- **Preferences**
 - Compare numerical values
 - cost(design) = 20 ← DesignType = “Closed”
 - cost(design) = 28 ← DesignType = “Open”
 - Compare categorical values
 - Durability(Closed) > Durability(Open)
Engineering Support Implementation

- Stand-alone tool for engineers
Comparison Systems

Decision Procedure (DMN)

- Easy to model
- Easy to understand for engineers
 - Verify correctness row-by-row
- No good representation for guess-and-check
- No distinction between physical constraints and arbitrary choices
 → poor maintainability
- Current systems only support 1 inference task
- No partial answers for unknown applications

Constraint Representation (IDP)

- More complex representation
 - Syntax + Constraint-based thinking
 - Knowledge extraction is harder
 - No trivial input-output relation
- Constraint system
 → No need for decision order
- Types of knowledge are separated
 - Constraints remain valid in other application areas
 - When circumstances change, only specific constraints change
- Multiple inference types supported
- Can handle partial input
DMN+ Proposal

- Idea:
 - Express constraints in DMN-like format → Readable representation
 - Use constraint solver as back-end → Broader useability

- Presented at RuleML
Digital Engineer: Overview

- 1. Knowledge Extraction/Update
- 2. Query
- 3. Proposals
- 4. Feedback
- 5. Data Storage
- 6. Machine Learning
- 7. Knowledge Consolidation
Machine Learning on Design DB

- Utilize historic designs
 - Technical drawings
 - EPDM data

1. Search existing solutions for specific input conditions
 - Similarity search

2. Learn new constraints

3. Check data consistency
Machine Learning
Technical drawing

- Identify key objects:
 - Segmentation
 - Object identification

- Design drawing
 - Define « design identity » (NN)

- Cells
 - Perform text recognition (OCR)
 - Use cell location to link text to design properties (ILP)
Machine Learning

Search Existing Designs for Similar Inputs

- What are similar inputs
 - Distance measure (EPDM & technical drawing Info)
 - Categorical data → Category should match
 - Data with order → Equal or harsher circumstance
 - Tmax → All designs with Tmax ≥ request
 - Tmin → All designs with Tmin ≤ request

- Possibly a lot of solutions
 - Cluster solutions
 - K-means clustering
 - 1 representative design
 - Gradually filter solutions

Most similar designs:
Machine Learning

Other possibilities

● Learn new constraints
 ○ Available data
 ■ Input (circumstances)
 ■ Output (design)
 ○ Find logical consequences which are present in data (but not yet explicitly known)

● Check data consistency
 ○ Available data
 ■ Technical drawing: always correct
 ● Visual information
 ● Cell information
 ■ EPDM data: Often not reliable
 ○ Find inconsistencies in user input fields and correct/complement them
Conclusion: Status & Next Steps
Status & Short Term Goals
Where are we going?

• Automated Engineering Tools (QAD, OR & DW)
 • 1 in Production:
 PC 2500&10k Ball Valves
 • 1 in Test:
 Screw Compressor Lip Seals
 • 7 in Development:
 • PC 15k Gate Valves
 • Cryogenic Ball Valves
 • Swivels
 • Std OmniLip
 • Std OmniSeal
 • RACO Space
 • Rulon Bearings
 • Direct communication between finished tools and DriveWorks in development
 → Head start for drafting team

• Engineering Support Tool (IDP)
 • Working core functionality
 • Additional functionalities in development based on user feedback
 • Knowledge base gradually expanded
 • Prototype of system and interface by end ‘19

• ML on EPDM drawings
 • Workflow validated
 • Improving models
 • Communication with engineering support tool in development
 • Prototype by end ‘19
Thank You

Q&A

Bram Aerts
b.aerts@kuleuven.be
+32 15 68 81 95

Nicholas Decleyre
nicholas.decleyre@saint-gobain.com
+32 474 94 71 21